4.8 Article

Layered double hydroxide supported nanopalladium catalyst for Heck-, Suzuki-, Sonogashira-, and Stille-type coupling reactions of chloroarenes

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 124, Issue 47, Pages 14127-14136

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ja026975w

Keywords

-

Ask authors/readers for more resources

Layered double hydroxide and Merrifield resin supported nanopalladium(0) catalysts are prepared by an exchange of PdCl42- followed by reduction and well characterized for the first time. The ligand-free heterogeneous layered double hydroxide supported nanopalladium (LDH-Pd-0) catalyst using the basic LDH in place of basic ligands indeed exhibits higher activity and selectivity in the Heck olefination of electron-poor and electron-rich chloroarenes in nonaqueous ionic liquids (NAIL) over the homogeneous PdCl2 system. Using microwave irradiation, the rate of the Heck olefination reaction is accelerated, manifold with the highest turnover frequency ever recorded in the case of both electron-poor and electron-rich chloroarenes. The basic LDH-Pd-0 shows a superior activity over a range of supported catalysts, from acidic to weakly basic Pd/C, Pd/SiO2, Pd/AL(2)O(3), and resin-PdCl42- in the Heck olefination of deactivated electron-rich 4-chloroanisole. The use of LDH-Pd-0 is extended to the Suzuki-, Sonogashira-, and Stille-type coupling reactions of chloroarenes in an effort to understand the scope and utility of the reaction. The catalyst is quantitatively recovered from the reaction by a simple filtration and reused for a number of cycles with almost consistent activity in all the coupling reactions. The heterogeneity studies provide an insight into mechanistic aspects of the Heck olefination reaction and evidence that the reaction proceeds on the surface of the nanopalladium particles of the heterogeneous catalyst. TEM images of the fresh and used catalyst indeed show that the nanostructured palladium supported on LDH remains unchanged at the end of the reaction, while the XPS and evolved gas detection by TGA-MS of the used catalyst identify ArPdX species on the heterogeneous surface. Thus, the ligand-free nanopalladium supported on LDH, synthesized by the simple protocol, displays superior activity over the other heterogeneous catalysts inclusive of nanopalladium in the C-C coupling reactions of chloroarenes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available