4.5 Article

Atomic scale characterization of supported Pd-Cu/γ-Al2O3 bimetallic catalysts

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 106, Issue 47, Pages 12239-12246

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp0265889

Keywords

-

Ask authors/readers for more resources

The reduction behavior of a Pd-Cu/gamma-Al2O3 catalyst precursor (containing 2% Pd and 1% Cu) is studied by atomic scale Z-contrast imaging, electron energy-loss spectroscopy (EELS), and X-ray energy dispersive spectroscopy (EDS) techniques available in a scanning transmission electron microscope (STEM). We found that the alloying behavior of the bimetallic nanoparticles strongly depends on the reduction temperature of the catalyst precursor materials. When the precursor is reduced at 523 or 773 K, individual metallic nanoparticles are formed with a composition varying from pure metallic Pd to Pd-Cu bimetallic alloys. Detailed spectroscopic analyses of the individual nanoparticles show that Pd is preferentially segregated onto the surfaces of the bimetallic Pd-Cu nanoparticles. At higher reduction temperatures, e.g., at 1073 K, however, all the nanoparticles are found to be bimetallic Pd-Cu alloys with either Pd- or Cu-rich surfaces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available