4.6 Article

Coordination of posttranslational modifications of bovine brain α-tubulin -: Polyglycylation of Δ2 tubulin

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 48, Pages 46140-46144

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M208065200

Keywords

-

Funding

  1. NCI NIH HHS [R29 CA 59711] Funding Source: Medline

Ask authors/readers for more resources

Microtubules participate in a large number of intracellular events including cell division, intracellular transport and secretion, axonal transport, and maintenance of cell morphology. They are composed of tubulin, a heterodimeric protein, consisting of two similar polypeptides alpha and beta. In mammalian cells, both alpha- and beta-tubutin occur as seven to eight different genetic variants, which also undergo numerous posttranslational modifications that include tyrosination-detyrosination and deglutamylation, phosphorylation, acetylation, polyglutamylation, and polyglycylation. Tyrosination-detyrosination is one of the major posttranslational modifications in which the C-terminal tyrosine residue in a-tubulin is added or removed reversibly. Although this modification does not alter the assembly activity of tubulin in vitro, these two forms of tubulin have been found to be distributed differently in vivo and are also correlated with microtubule stability (Gunderson, G. G., Kalnoski, M. H., and Bulinski, J. C. (1984) Cell 38, 779789). Thus, the question arises as to whether these two forms of tubulin differ in any other modifications. In an effort to answer this question, the tyrosinated and the nontyrosinated forms of the alpha1/2 isoform have been purified from brain tubulin by immunoaffinity chromatography. matrix-assisted laser desorption/ionization-time of flight mass spectrometric analysis of the C-terminal peptide revealed that the tyrosinated form is polyglutamylated with one to four Glu residues, while the Delta2 tubulin is polyglycylated with one to three Gly residues. These results indicate that posttranslational modifications of tubulin are correlated with each other and that polyglutamylation and polyglycylation of tubulin may have important roles in regulating microtubule assembly, stability, and function in vivo.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available