4.6 Article

A common autoimmunity predisposing signal peptide variant of the cytotoxic T-lymphocyte antigen 4 results in inefficient glycosylation of the susceptibility allele

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 48, Pages 46478-46486

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M206894200

Keywords

-

Ask authors/readers for more resources

A common T17A polymorphism. in the signal peptide of the cytotoxic T-lymphocyte antigen 4 (CTLA-4), a T-cell receptor that negatively regulates immune responses, is associated with risk for autoimmune disease. Because the polymorphism is absent from the mature protein, we hypothesized that its biological effect must involve early stages of protein processing, prior to signal peptide cleavage. Constructs representing the two alleles were compared by in vitro translation, in the presence of endoplasmic reticulum. membranes. We studied glycosylation by endoglycosidase H digestion and glycosylation mutant constructs, cleavage of peptide with inhibitors, and membrane integration by ultracentrifugation and proteinase K sensitivity. A major cleaved and glycosylated product was seen for both alleles of the protein but a band representing incomplete glycosyIation was markedly more abundant in the predisposing Ala allele (32.7 +/- 1.0 versus 10.6% +/- 1.2 for Thr, p < 10(-9)). In addition, differential intracellular/surface partitioning was studied with co-transfection of the alleles fused to distinct fluorescent proteins in COS-1 cells. By quantitative confocal microscopy we found a higher ratio of cell surface/total CTLAThr(17) versus CTLAAla(17) (p = 0.01). Our findings corroborate observations, in other proteins, that the signal peptide can determine the efficiency of post-translational modifications other than cleavage and suggest inefficient processing of the autoimmunity predisposing Ala allele as the explanation for the genetic effect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available