4.6 Article

Multimodality of rich clusters from the SDSS DR8 within the supercluster-void network

Journal

ASTRONOMY & ASTROPHYSICS
Volume 542, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201219119

Keywords

large-scale structure of Universe; galaxies: clusters: general

Funding

  1. Alfred P. Sloan Foundation
  2. National Science Foundation
  3. US Department of Energy
  4. National Aeronautics and Space Administration
  5. Japanese Monbukagakusho
  6. Max Planck Society
  7. Higher Education Funding Council for England
  8. American Museum of Natural History
  9. Astrophysical Institute Potsdam
  10. University of Basel
  11. University of Cambridge
  12. Case Western Reserve University
  13. University of Chicago
  14. Drexel University
  15. Fermilab
  16. Institute for Advanced Study
  17. Japan Participation Group
  18. Johns Hopkins University
  19. Joint Institute for Nuclear Astrophysics
  20. Kavli Institute for Particle Astrophysics and Cosmology
  21. Korean Scientist Group
  22. Chinese Academy of Sciences (LAMOST)
  23. Los Alamos National Laboratory
  24. Max-Planck-Institute for Astronomy (MPIA)
  25. Max-Planck-Institute for Astrophysics (MPA)
  26. New Mexico State University
  27. Ohio State University
  28. University of Pittsburgh
  29. University of Portsmouth
  30. Princeton University
  31. United States Naval Observatory
  32. University of Washington
  33. Estonian Science Foundation [8005, 7765, 9428, MJD 272]
  34. Estonian Ministry for Education and Science [SF0060067s08]
  35. European Structural Funds grant for the Centre of Excellence Dark Matter in (Astro)particle Physics and Cosmology [TK120]
  36. ICRAnet
  37. Academy of Finland
  38. Turku University Foundation
  39. Spanish MICINN CONSOLIDER [ATA2006-14056, CSD2007-00060]
  40. Generalitat Valenciana [PROMETEO/2009/064]

Ask authors/readers for more resources

Context. The study of the properties of galaxy clusters and their environment gives us information about the formation and evolution of galaxies, groups and clusters, and larger structures - superclusters of galaxies and the whole cosmic web. Aims. We study the relations between the multimodality of galaxy clusters drawn from the SDSS DR8 and the environment where they reside. As cluster environment we consider the global luminosity density field, supercluster membership, and supercluster morphology. Methods. We use 3D normal mixture modelling, the Dressler-Shectman test, and the peculiar velocity of cluster main galaxies as signatures of multimodality of clusters. We calculate the luminosity density field to study the environmental densities around clusters, and to find superclusters where clusters reside. We determine the morphology of superclusters with the Minkowski functionals and compare the properties of clusters in superclusters of different morphology. We apply principal component analysis to study the relations between the multimodality parameters of clusters and their environment simultaneously. Results. Multimodal clusters reside in higher density environment than unimodal clusters. Clusters in superclusters have higher probability to have substructure than isolated clusters. The superclusters can be divided into two main morphological types, spiders and filaments. Clusters in superclusters of spider morphology have higher probabilities to have substructure and larger peculiar velocities of their main galaxies than clusters in superclusters of filament morphology. The most luminous clusters are located in the high-density cores of rich superclusters. Five of seven most luminous clusters, and five of seven most multimodal clusters reside in spider-type superclusters; four of seven most unimodal clusters reside in filament-type superclusters. Conclusions. Our study shows the importance of the role of superclusters as high density environment, which affects the properties of galaxy systems in them.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available