4.5 Article Proceedings Paper

Triplet state dynamics on isolated conjugated polymer chains

Journal

CHEMICAL PHYSICS
Volume 285, Issue 1, Pages 3-11

Publisher

ELSEVIER
DOI: 10.1016/S0301-0104(02)00684-5

Keywords

conjugated polymers; triplet states; intersystem crossing; singlet oxygen; delayed fluorescence

Ask authors/readers for more resources

Triplet state behaviour has been studied with several conjugated polymers in dilute benzene solutions by flash photolysis, photoacoustic calorimetry (PAC) and pulse radiolysis/energy transfer. With polythiophenes and the ladder poly(p-phenylene) MeLPPP, singlet-triplet intersystem crossing (ISC) is relatively efficient. In contrast, it is inefficient with poly(p-phenylenevinylene)s (PPVs) and polyfluorene, while with cyano-substituted PPV, there is no evidence for any long-lived triplet state. Energy transfer from triplet biphenyl to MEH-PPV is diffusion controlled and triplet state lifetimes are typically tens or hundreds of mus. All the triplet states are quenched by molecular oxygen, leading to formation of singlet oxygen with yields which are generally close to those for triplet formation. With pulse radiolysis at high doses, it is possible to have more than one triplet state per polymer chain. This can lead to delayed fluorescence via intrachain triplet-triplet annihilation. Kinetic analysis of this shows slow movement of triplets by hopping along the chain. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available