4.6 Article

Orion revisited I. The massive cluster in front of the Orion nebula cluster

Journal

ASTRONOMY & ASTROPHYSICS
Volume 547, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201220119

Keywords

stars: formation; HII regions; stars: pre-main sequence; stars: early-type; stars: late-type; dust, extinction

Funding

  1. Ramon y Cajal fellowship program [RYC-2009-04497]
  2. Faculty of the European Space Astronomy Centre (ESAC)
  3. Austrian Science Fund (FWF)
  4. Alfred P. Sloan Foundation
  5. National Science Foundation
  6. US Department of Energy Office of Science
  7. National Aeronautics and Space Administration
  8. Canadian Space Agency
  9. ESA Member States
  10. University of Arizona
  11. Brazilian Participation Group
  12. Brookhaven National Laboratory
  13. University of Cambridge
  14. University of Florida
  15. French Participation Group
  16. German Participation Group
  17. Instituto de Astrofisica de Canarias
  18. Michigan State/Notre Dame/JINA Participation Group
  19. Johns Hopkins University
  20. Lawrence Berkeley National Laboratory
  21. Max Planck Institute for Astrophysics
  22. New Mexico State University
  23. New York University
  24. Ohio State University
  25. Pennsylvania State University
  26. University of Portsmouth
  27. Princeton University
  28. Spanish Participation Group
  29. University of Tokyo
  30. University of Utah
  31. Vanderbilt University
  32. University of Virginia
  33. University of Washington
  34. Yale University

Ask authors/readers for more resources

Aims. The aim of this work is to characterize the stellar population between Earth and the Orion A molecular cloud where the well-known star formation benchmark Orion nebula cluster (ONC) is embedded. Methods. We used the denser regions the Orion A cloud to block optical background light, effectively isolating the stellar population in front of it. We then used a multi-wavelength observational approach to characterize the cloud's foreground stellar population. Results. We find that there is a rich stellar population in front of the Orion A cloud, from B-stars to M-stars, with a distinct 1) spatial distribution; 2) luminosity function; and 3) velocity dispersion from the reddened population inside the Orion A cloud. The spatial distribution of this population peaks strongly around NGC 1980 (iota Ori) and is, in all likelihood, the extended stellar content of this poorly studied cluster. We infer an age of similar to 4-5 Myr for NGC 1980 and estimate a cluster population of about 2000 stars, which makes it one of the most massive clusters in the entire Orion complex. This newly found population overlaps significantly with what is currently assumed to be the ONC and the L1641N populations, and can make up for more than 10-20% of the ONC population (30-60% if the Trapezium cluster is excluded from consideration). What is currently taken in the literature as the ONC is then a mix of several intrinsically different populations, namely 1) the youngest population, including the Trapezium cluster and ongoing star formation in the dense gas inside the nebula; 2) the foreground population, dominated by the NGC 1980 cluster; and 3) the poorly constrained population of foreground and background Galactic field stars. Conclusions. Our results support a scenario where the ONC and L1641N are not directly associated with NGC 1980, i.e., they are not the same population emerging from its parental cloud, but are instead distinct overlapping populations. The nearest massive star formation region and the template for massive star-and cluster formation models is then substantially contaminated by the foreground stellar population of the massive NGC 1980 cluster, formed about 4-5 Myr ago in a different, but perhaps related, event in the larger Orion star formation complex. This result calls for a revision of most of the observables in the benchmark ONC region (e.g., ages, age spread, cluster size, mass function, disk frequency, etc.).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available