4.6 Article

Synthetic observations of first hydrostatic cores in collapsing low-mass dense cores II. Simulated ALMA dust emission maps

Journal

ASTRONOMY & ASTROPHYSICS
Volume 548, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201220067

Keywords

stars: formation; stars: low-mass; magnetohydrodynamics (MHD); radiative transfer; techniques: interferometric; methods: numerical

Funding

  1. CNES
  2. French ANR Retour Postdoc program

Ask authors/readers for more resources

Context. First hydrostatic cores are predicted by theories of star formation, but their existence has never been demonstrated convincingly by (sub) millimeter observations. Furthermore, the multiplicity in the early phases of the star formation process is poorly constrained. Aims. The purpose of this paper is twofold. First, we seek to provide predictions for ALMA dust continuum emission maps from early Class 0 objects. Second, we show to what extent ALMA will be able to probe the fragmentation scale in these objects. Methods. Following our companion paper, we post-processed three state-of-the-art radiation-magneto-hydrodynamic 3D adaptive mesh refinement calculations to compute the emanating dust emission maps. We then produced synthetic ALMA observations of the dust thermal continuum from first hydrostatic cores. Results. We present the first synthetic ALMA observations of dust continuum emission from the first hydrostatic cores. We analyze the results given by the different bands and configurations and we discuss for which combinations of the two the first hydrostatic cores would most likely be observed. We also show that observing dust continuum emission with ALMA will help in identifying the physical processes occurring within collapsing dense cores. If the magnetic field is playing a role, the emission pattern will show evidence of a pseudo-disk and even of a magnetically driven outflow, which pure hydrodynamical calculations cannot reproduce. Conclusions. The capabilities of ALMA will enable us to make significant progress towards understanding the fragmentation at the early Class 0 stage and discovering first hydrostatic cores.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available