4.6 Article Proceedings Paper

Role of the antioxidant ascorbate in hibernation and warming from hibernation

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/S1532-0456(02)00118-7

Keywords

vitamin C; antioxidants; reperfusion; torpor; metabolic rate; ischemia; neuroprotection; arousal; vit C; stroke; arctic ground squirrel; Spermophilus parryii

Funding

  1. NINDS NIH HHS [NS-34115, NS38648, NS41069-01] Funding Source: Medline

Ask authors/readers for more resources

Ground squirrels tolerate up to 90% reductions in cerebral blood flow during hibernation as well as rapid reperfusion upon periodic arousal from torpor without apparent neurological damage. Thus, hibernation is studied as a model of tolerance to cerebral ischemia and other types of brain injury. Metabolic suppression likely plays a primary adaptive role that allows hibernating species to tolerate dramatic fluctuations in blood flow. Several other aspects of hibernation physiology are also consistent with tolerance to ischemia and reperfusion suggesting that multiple neuroprotective adaptations may work in concert during hibernation. The purpose of the present work is to review evidence for enhanced antioxidant defense systems during hibernation, with a focus on ascorbate, and discuss potential roles of these antioxidants during hibernation. In concert with dramatic decreases in blood flow, nutrient and oxygen delivery, plasma concentrations of the antioxidant ascorbate [(Asc)p] increase 1-5-fold during hibernation. In contrast, during re-warming, [Asc]p declines at a relatively rapid rate that peaks at the time of maximal O-2 consumption. This peak in O-2 consumption also coincides with a brief rise in plasma urate concentration consistent with a surge in reactive oxygen species production. Overall, data suggest that elevated concentration of plasma ascorbate is poised for distribution to metabolically active tissues during the surge in oxidative metabolism that accompanies re-warming during hibernation. This pool of ascorbate, as well as increased expression of other antioxidant defense systems, may protect vulnerable tissues from oxidative stress during hibernation and re-warming from hibernation. Better understanding of the role of ascorbate in hibernation may guide use of ascorbate and other antioxidants in treatment of stroke, head trauma and neurodegenerative disease. (C) 2002 Elsevier Science Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available