4.6 Article

THINGS about MOND

Journal

ASTRONOMY & ASTROPHYSICS
Volume 527, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201015283

Keywords

galaxies: kinematics and dynamics; dark matter; galaxies: spiral; gravitation

Funding

  1. AvH foundation (Germany)
  2. South African Research Chairs Initiative of the Department of Science and Technology
  3. National Research Foundation

Ask authors/readers for more resources

We present an analysis of 12 high-resolution galactic rotation curves from The HI Nearby Galaxy Survey (THINGS) in the context of modified Newtonian dynamics (MOND). These rotation curves were selected to be the most reliable for mass modelling, and they are the highest quality rotation curves currently available for a sample of galaxies spanning a wide range of luminosities. We fit the rotation curves with the simple and standard interpolating functions of MOND, and we find that the simple function yields better results. We also redetermine the value of a(0), and find a median value very close to the one determined in previous studies, a(0) = (1.22 +/- 0.33) x 10(-8) cm s(-2). Leaving the distance as a free parameter within the uncertainty of its best independently determined value leads to excellent quality fits for 75% of the sample. Among the three exceptions, two are also known to give relatively poor fits in Newtonian dynamics plus dark matter. The remaining case (NGC 3198) presents some tension between the observations and the MOND fit, which might, however, be explained by the presence of non-circular motions, by a small distance, or by a value of a(0) at the lower end of our best-fit interval, 0.9 x 10(-8) cm s(-2). The best-fit stellar M/L ratios are generally in remarkable agreement with the predictions of stellar population synthesis models. We also show that the narrow range of gravitational accelerations found to be generated by dark matter in galaxies is consistent with the narrow range of additional gravity predicted by MOND.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available