4.7 Article

Shh signaling within the dental epithelium is necessary for cell proliferation, growth and polarization

Journal

DEVELOPMENT
Volume 129, Issue 23, Pages 5323-5337

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.00100

Keywords

sonic hedgehog; smoothened; Patched2; mRNA subcellular localization; CyclinD1; cell polarity; cell size; ZO-1; molar fusion; tooth; mouse

Funding

  1. NIDCR NIH HHS [K22DE14230, DE 11697] Funding Source: Medline
  2. NINDS NIH HHS [NS 33642] Funding Source: Medline

Ask authors/readers for more resources

Sonic hedgehog (Shh), a member of the mammalian Hedgehog (Hh) family, plays a key role during embryogenesis and organogenesis. Tooth development, odontogenesis, is governed by sequential and reciprocal epithelial-mesenchymal interactions. Genetic removal of Shh activity from the dental epithelium, the sole source of Shh during tooth development, alters tooth growth and cytological organization within both the dental epithelium and mesenchyme of the tooth. In this model it is not clear which aspects of the phenotype are the result of the direct action of Shh on a target tissue and which are indirect effects due to deficiencies in reciprocal signalings between the epithelial and mesenchymal components. To distinguish between these two alternatives and extend our understanding of Shh's actions in odontogenesis, we have used the Cre-loxP system to remove Smoothened (Smo) activity in the dental epithelium. Smo, a seven-pass membrane protein is essential for the transduction of all Hh signals. Hence, removal of Smo activity from the dental epithelium should block Shh signaling within dental epithelial derivatives while preserving normal mesenchymal signaling. Here we show that Shh-dependent interactions occur within the dental epithelium itself. The dental mesenchyme develops normally up until birth. In contrast, dental epithelial derivatives show altered proliferation, growth, differentiation and polarization. Our approach uncovers roles for Shh in controlling epithelial cell size, organelle development and polarization. Furthermore, we provide evidence that Shh signaling between ameloblasts and the overlying stratum intermedium may involve subcellular localization of Patched 2 and Gli1 mRNAs, both of which are targets of Shh signaling in these cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available