4.4 Article

Protein kinase C-mediated desmin phosphorylation is related to myofibril disarray in cardiomyopathic hamster heart

Journal

EXPERIMENTAL BIOLOGY AND MEDICINE
Volume 227, Issue 11, Pages 1039-1046

Publisher

SOC EXPERIMENTAL BIOLOGY MEDICINE
DOI: 10.1177/153537020222701113

Keywords

cardiac hypertrophy; myocardium; intermediate filaments; myofibril protein; cell culture

Funding

  1. NHLBI NIH HHS [HL 58435, HL 61246] Funding Source: Medline

Ask authors/readers for more resources

The cardiomyopathic (CM) Syrian golden hamster (strain UMX7.1) exhibits a hereditary cardiomyopathy, which causes premature death resulting from congestive heart failure. The CM animals show extensive cardiac myofibril disarray and myocardial calcium overload. The present study has been undertaken to examine the role of desmin phosphorylation in myofibril disarray observed in CM hearts. The data from skinned myofibril protein phosphorylation assays have shown that desmin can be phosphorylated by protein kinase C (PKC). There is no significant difference in the content of desmin between CM and control hamster hearts. However, the desmin from CM hearts has a higher phosphorylation level than that of the normal hearts. Furthermore, we have examined the distribution of desmin and myofibril organization with immunofluorescent microscopy and immunogold electron microscopy in cultured cardiac myocytes after treatment with the PKC-activating phorbol ester, 12-O-tetradecanylphorbol-13-acetate (TPA). When the cultured normal hamster cardiac cells are treated with TPA, desmin filaments are disassembled and the myofibrils become disarrayed. The myofibril disarray closely mimics that observed in untreated CM cultures. These results suggest that disassembly of desmin filaments, which could be caused by PKC-mediated phosphorylation, may be a factor in myofibril disarray in cardiomyopathic cells and that the intermediate filament protein, desmin, plays an important role in maintaining myofibril alignment in cardiac cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available