4.6 Article

From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt Survey

Journal

ASTRONOMY & ASTROPHYSICS
Volume 518, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/201014666

Keywords

stars: formation; circumstellar matter; ISM: clouds; ISM: structure; submillimeter: ISM

Funding

  1. CSA (Canada)
  2. NAOC (China)
  3. CEA, CNES, CNRS (France)
  4. ASI (Italy)
  5. MCINN (Spain)
  6. SNSB (Sweden)
  7. STFC (UK)
  8. NASA (USA)
  9. BMVIT (Austria)
  10. ESA-PRODEX (Belgium)
  11. CEA/CNES (France)
  12. DLR (Germany)
  13. ASI/INAF (Italy)
  14. CICYT/MCYT (Spain)
  15. STFC [ST/G002533/1, PP/D000963/1] Funding Source: UKRI
  16. Science and Technology Facilities Council [PP/D000963/1, PP/E001181/1, ST/G002533/1] Funding Source: researchfish

Ask authors/readers for more resources

We summarize the first results from the Gould Belt Survey, obtained toward the Aquila rift and Polaris Flare regions during the science demonstration phase of Herschel. Our 70-500 mu m images taken in parallel mode with the SPIRE and PACS cameras reveal a wealth of filamentary structure, as well as numerous dense cores embedded in the filaments. Between similar to 350 and 500 prestellar cores and similar to 45-60 Class 0 protostars can be identified in the Aquila field, while similar to 300 unbound starless cores and no protostars are observed in the Polaris field. The prestellar core mass function (CMF) derived for the Aquila region bears a strong resemblance to the stellar initial mass function (IMF), already confirming the close connection between the CMF and the IMF with much better statistics than earlier studies. Comparing and contrasting our Herschel results in Aquila and Polaris, we propose an observationally-driven scenario for core formation according to which complex networks of long, thin filaments form first within molecular clouds, and then the densest filaments fragment into a number of prestellar cores via gravitational instability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available