4.6 Article

Tissue transglutaminase and its substrates in bone

Journal

JOURNAL OF BONE AND MINERAL RESEARCH
Volume 17, Issue 12, Pages 2161-2173

Publisher

WILEY
DOI: 10.1359/jbmr.2002.17.12.2161

Keywords

bone; transglutaminase; protein cross-linking; osteopontin; noncollagenous bone proteins

Ask authors/readers for more resources

Tissue transglutaminase (tTG) is an intra- and extracellular, protein- cross-linking enzyme that has been implicated in apoptosis, matrix stabilization, and cell attachment in a variety of tissues. This study provides in vivo evidence in bone of TG activity, its tissue localization, and identification of its substrates. In microplate- and blotting-based activity assays using biotinylated primary amine as a probe, we show TG activity in protein extracts from the mineralized compartment of intramembranous rat bone. Avidin affinity purification of bone extract labeled with biotinylated primary amine in the presence of tTG, in conjunction with Western blotting, permitted identification of three major noncollagenous TG substrates in bone: osteopontin (OPN), bone sialoprotein (BSP), and alpha(2) HS-glycoprotein (AHSG), of which the latter two are novel substrates. Crosslinking and labeling of purified proteins confirmed their ability to serve as TG substrates, because they readily incorporated biotinylated primary amine and formed large protein aggregates in the presence of tTG. All three proteins were also identified in the high molecular weight complexes extractable from the mineralized compartment of bone. Two-dimensional (2D) gel electrophoretic analysis combined with Western blotting indicated that the proteins are not cross-linked to each other, but form distinct homotypic polymers. In the extracellular matrix of bone, tTG and isopeptide bonds were localized by immunohistochemistry in the osteoid and in the pericellular matrix surrounding osteocytes. At the cellular level, osteoblasts and osteocytes were immunostained for tTG. Collectively, these data suggest a role for tTG and its covalently cross-linked substrates in cell adhesion and possibly also in bone matrix maturation and calcification.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available