4.5 Article Proceedings Paper

Endometriosis: the pathophysiology as an estrogen-dependent disease

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0960-0760(02)00260-1

Keywords

aromatase cytochrome P450; endometriosis; endometrium; 17 beta-hydroxysteroid dehydrogenase; steroid receptors

Ask authors/readers for more resources

Endometriosis, defined as the presence of endometrial glands and stroma outside of the uterine cavity, develops mostly in women of reproductive age and regresses after menopause or ovariectomy, suggesting that the growth is estrogen-dependent. Indeed, the lesions contain estrogen receptors (ER) as well as aromatase, an enzyme that catalyses the conversion of androgens to estrogens, suggesting that local estrogen production may stimulate the growth of lesions. The expression patterns of ER and progesterone receptors in endometriotic lesions are different from those in the eutopic endometrium. Moreover, estrogen metabolism, including the expression pattern of aromatase and the regulation of 17beta-hydroxysteroid dehydrogenase type 2 (an enzyme responsible for the inactivation of estradiol to estrone), is altered in the eutopic endometrium of women with endometriosis, adenomyosis, and/or leiomyomas compared to that in the eutopic endometrium of women without disease. Immunostaining for P450arom in endometrial biopsy specimens diagnosed these diseases with sensitivity and specificity of 91 and 100%, respectively. This is applicable to the clinical diagnosis of endometriosis. The polymorphisms in the ER-alpha gene, the CYP19 gene encoding aromatase, and several other genes are associated with the risk of endometriosis. Studies of these will lead to better understandings of the etiology and pathophysiology of endometriosis. (C) 2003 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available