4.6 Article

Protostellar collapse: radiative and magnetic feedbacks on small-scale fragmentation

Journal

ASTRONOMY & ASTROPHYSICS
Volume 510, Issue -, Pages -

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/200913597

Keywords

magnetohydrodynamics (MHD); radiative transfer; stars: formation; stars: low mass; ISM: clouds; ISM: kinematics and dynamics

Funding

  1. European Community [P7/2007-2013]

Ask authors/readers for more resources

Context. Both radiative transfer and magnetic field are understood to have strong impacts on the collapse and the fragmentation of prestellar dense cores, but no consistent calculation exists on these scales. Aims. We perform the first radiation-magneto-hydrodynamics numerical calculations on a prestellar core scale. Methods. We present original AMR calculations including that of a magnetic field (in the ideal MHD limit) and radiative transfer, within the flux-limited diffusion approximation, of the collapse of a 1 M-circle dot dense core. We compare the results with calculations performed with a barotropic EOS. Results. We show that radiative transfer has an important impact on the collapse and the fragmentation, by means of the cooling or heating of the gas, and its importance depends on the magnetic field. A stronger field yields a more significant magnetic braking, increasing the accretion rate and thus the effect of the radiative feedback. Even for a strongly magnetized core, where the dynamics of the collapse is dominated by the magnetic field, radiative transfer is crucial to determine the temperature and optical depth distributions, two potentially accessible observational diagnostics. A barotropic EOS cannot account for realistic fragmentation. The diffusivity of the numerical scheme, however, is found to strongly affect the output of the collapse, leading eventually to spurious fragmentation. Conclusions. Both radiative transfer and magnetic field must be included in numerical calculations of star formation to obtain realistic collapse configurations and observable signatures. Nevertheless, the numerical resolution and the robustness of the solver are of prime importance to obtain reliable results. When using an accurate solver, the fragmentation is found to always remain inhibited by the magnetic field, at least in the ideal MHD limit, even when radiative transfer is included.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available