4.2 Article

Nutrient limitation to primary productivity in a secondary savanna in Venezuela

Journal

BIOTROPICA
Volume 34, Issue 4, Pages 493-501

Publisher

WILEY
DOI: 10.1111/j.1744-7429.2002.tb00569.x

Keywords

fertilization; nitrogen; nutrient limitation; phosphorus; savanna; Trachypogon; Venezuela

Categories

Ask authors/readers for more resources

We examined nutrient limitation to primary productivity in a secondary savanna in the interior branch of the Coastal Range of Venezuela, which was converted from forest to savanna more than 100 years ago. We manipulated soil nutrients by adding nitrogen (+N), phosphorus and potassium (+PK), and nitrogen, phosphorus, and potassium (+NPK) to intact savanna. Eleven months after fertilization, we measured aboveground biomass and belowground biomass as live fine roots in the top 20 cm of soil, and species and functional group composition in response to nutrient additions. Aboveground biomass was highest in the NPK treatment ([mean g/m(2)]; control = 402, +N = 718, +PK = 490, +NPK = 949). Aboveground production, however, appeared to be limited primarily by N. Aboveground biomass increased 78 percent when N was added alone but did not significantly respond to PK additions when compared to controls. In contrast to aboveground biomass, belowground biomass increased with PK additions but showed no significant increase with N (depth 0-20 cm; [mean g/m(2)]; control = 685, +N = 443, +PK = 827, +NPK = 832). There was also a 36 percent increase in root length with PK additions when compared to controls. Whole savanna shoot:root ratios were similar for control and +PK (0.6), while those for +N or +NPK fertilization were significantly higher (1.7 and 1.2, respectively). Total biomass response (above + belowground) to nutrient additions showed a strong N and PK co-limitation ([mean g/m(2)]; Control = 1073, +N = 1111, +PK = 1258, +NPK = 1713). Aboveground biomass of all monocots increased with N additions, whereas dicots showed no response to nutrient additions. Trachypogon spp. (T plumosus + T vestitus) and Axonopus canescens, the two dominant grasses, made up more than 89 percent of the total aboveground biomass in these sites. Tracbypogon spp. responded to NPK, whereas A. canescens, sedges, and the remaining monocots only responded to N. Even though nutrient additions resulted in higher aboveground biomass in N and NPK fertilized plots, this had little effect on plant community composition. With the exception of sedges, which responded positively to N additions and increased from 4 to 8 percent of the plant community, no changes were observed in plant community composition after I I months.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available