4.7 Article

Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis

Journal

GENES & DEVELOPMENT
Volume 16, Issue 23, Pages 3004-3016

Publisher

COLD SPRING HARBOR LAB PRESS
DOI: 10.1101/gad.249202

Keywords

cohesin; condensin; sister chromatid cohesion; chromosome condensation; histone H3 phosphorylation

Ask authors/readers for more resources

The establishment of metaphase chromosomes is an essential prerequisite of sister chromatid separation in anaphase. It involves the coordinated action of cohesin and condensin, protein complexes that mediate cohesion and condensation, respectively. In metazoans, most cohesin dissociates from chromatin at prophase, coincident with association of condensin. Whether loosening of cohesion at the onset of mitosis facilitates the compaction process, resolution of the sister chromatids, or both, remains unknown. We have found that the prophase release of cohesin is completely blocked when two mitotic kinases, aurora B and polo-like kinase (Plx1), are simultaneously depleted from Xenopus egg extracts. Condensin loading onto chromatin is not affected under this condition and rod-shaped chromosomes are produced that show an apparently normal level of compaction. However, the resolution of sister chromatids within these chromosomes is severely compromised. This is not because of inhibition of topoisomerase II activity that is also required for the resolution process. We propose that aurora B and Plx1 cooperate to destabilize the sister chromatid linkage through distinct mechanisms that may involve phosphorylation of histone H3 and cohesin, respectively. More importantly, our results strongly suggest that cohesin release at the onset of mitosis is essential for sister chromatid resolution but not for condensin-mediated compaction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available