4.7 Article

Chloroplast transformation with modified accD operon increases acetyl-CoA carboxylase and causes extension of leaf longevity and increase in seed yield in tobacco

Journal

PLANT AND CELL PHYSIOLOGY
Volume 43, Issue 12, Pages 1518-1525

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcf172

Keywords

acetyl-CoA carboxylase (EC 6.4.1.2); fatty acid synthesis; leaf longevity; post-transcriptional regulation; seed yield; tobacco

Ask authors/readers for more resources

Acetyl-CoA carboxylase (ACCase) in plastids is a key enzyme regulating the rate of de novo fatty acid biosynthesis in plants. Plastidic ACCase is composed of three nuclear-encoded subunits and one plastid-encoded accD subunit. To boost ACCase levels, we examined whether overexpression of accD elevates ACCase production. Using homologous recombination, we replaced the promoter of the accD operon in the tobacco plastid genome with a plastid rRNA-operon (rrn) promoter that directs enhanced expression in photosynthetic and non-photosynthetic organs, and successfully raised the total ACCase levels in plastids. This result suggests that the level of the accD subunit is a determinant of ACCase levels, and that enzyme levels are in part controlled post-transcriptionally at the level of subunit assembly. The resultant transformants grew normally and the fatty acid content was significantly increased in leaves, but not significantly in seeds. However, the transformants displayed extended leaf longevity and a twofold increase of seed yield over the control value, which eventually almost doubled the fatty acid production per plant of the transformants relative to control and wild-type plants. These findings offer a potential method for raising plant productivity and oil production.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available