4.8 Article

G-quartets assembly within a G-rich DNA flap. A possible event at the center of the HIV-1 genome

Journal

NUCLEIC ACIDS RESEARCH
Volume 30, Issue 23, Pages 5276-5283

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/nar/gkf644

Keywords

-

Ask authors/readers for more resources

Stretches of guanines can associate in vitro through Hoogsteen hydrogen bonding to form four-stranded structures. In the HIV-1 central DNA flap, generated by reverse transcriptase at the end of retrotranscription, both the two 99 nt-long overlapping (+) strands contain two adjacent tracts of guanines. This study demonstrates that oligonucleotides containing these G-clusters form highly stable G-quadruplexes of various structures in vitro, whose formation was controlled by an easy and reversible protocol using sodium hydroxide. Among these sequences, a G'2 hairpin dimer was the most stable structure adopted by the 5'-tail of the (+) downstream strand. Since the two (+) strands of the HIV-1 central DNA flap hold these G-clusters, and based on the properties of reverse branch migration in DNA flaps, constructions using HIV-1 sequences were assembled to mimic small DNA flaps where the G-clusters are neighbors. G-quartets were successfully probed in such flaps. They were induced by potassium and by a dibenzophenanthroline derivative already known to stabilize them. Such results suggest some function(s) for G-quartets associated with a DNA flap in the HIV-1 pre-integration steps, and argue for their transient formation during the processing of G-rich DNA flaps at the time of replication and/or repair.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available