4.7 Article

Regulation of xanthine oxidoreductase by intracellular iron

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
Volume 283, Issue 6, Pages C1722-C1728

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00280.2002

Keywords

deferoxamine; gene regulation; iron-sulfur proteins; reactive oxygen species; ischemia-reperfusion injury

Ask authors/readers for more resources

Xanthine oxidoreductase (XOR) may produce reactive oxygen species and play a role in ischemia-reperfusion injury. Because tissue iron levels increase after ischemia, and because XOR contains functionally critical iron-sulfur clusters, we studied the effects of intracellular iron on XOR expression. Ferric ammonium citrate and FeSO4 elevated intracellular iron levels and increased XOR activity up to twofold in mouse fibroblast and human bronchial epithelial cells. Iron increased XOR protein and mRNA levels, whereas protein and RNA synthesis inhibitors abolished the induction of XOR activity. A human XOR promoter construct (nucleotides +42 to -1937) was not induced by iron in human embryonic kidney cells. Hydroxyl radical scavengers did not block induction of XOR activity by iron. Iron chelation by deferoxamine (DFO) decreased XOR activity but did not lower endogenous XOR protein or mRNA levels. Furthermore, DFO reduced the activity of overexpressed human XOR but not the amount of immunoreactive protein. Our data show that XOR activity is transcriptionally induced by iron but posttranslationally inactivated by iron chelation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available