3.8 Article

Effect of restored freshwater inflow on macrofauna and meiofauna in upper Rincon Bayou, Texas, USA

Journal

ESTUARIES
Volume 25, Issue 6B, Pages 1436-1447

Publisher

ESTUARINE RES FEDERATION
DOI: 10.1007/BF02692237

Keywords

-

Ask authors/readers for more resources

Construction of two dams in 1958 and 1982 reduced freshwater inflow events to Rincon Bayou, part of the Nucces Delta near Corpus Christi, Texas, USA. Inflow reduction led to a reverse estuary, where low-salinity water flooded the delta on incoming tides and higher salinities were found near the Nueces River. Hypersaline conditions caused by high evaporation rates and low water levels were common during summer in the upper reaches. In October 1995, an overflow diversion channel was created by lowering the bank of the Nueces River to restore inflow events into Rincon Bayou, which is the main stem creek that runs through the center of the Delta. Hypersaline conditions occurred four times from mid-1994 to mid-1997 and only once after mid-1997. Lower, rather than higher, salinity conditions were found after August 1997 in the upper reaches. Benthic faunal recovery was monitored by changes in macrofauma and meiofauna communities. Macrofauna responded to inflow events with increased abundances, biomass, and diversity but decreased during hypersaline conditions. Meiofauna abundance also increased with increasing inflow. Benthic characteristics were different in Rincon Bayou than in a reference site, upstream from introduced inflow. As inflow events have increased due to the diversion, the opportunities for positive responses to increased flow have increased. Although the overflow channel was filled in at the end of the demonstration project in fall 2000, the City of Corpus Christi reopened the channel in fall 2001 because the ecological benefits were credited toward the state-mandated minimum flow requirement for the Nueces Estuary.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available