4.6 Article

Role of glutamine and arginase in protection against ammonia-induced cell death in gastric epithelial cells

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpgi.00235.2002

Keywords

Helicobacter pylori; rat; rat gastric epithelial 1 cells; NH4Cl

Funding

  1. NIDDK NIH HHS [DK-34854, R01-DK-15681] Funding Source: Medline

Ask authors/readers for more resources

Ammonia is a cytotoxic factor produced during Helicobacter pylori infection that may reduce the survival of surface epithelial cells. Here we examine whether ammonia kills cells and whether L-glutamine (L-Gln) protects against cell death by stimulating ammonia detoxification pathways. Cell viability and vacuolation were quantified in rat gastric epithelial (RGM1) cells incubated with ammonium chloride at pH 7.4 in the presence or absence of L-Gln. Incubation of RGM1 cells with ammonium chloride caused a dose-dependent increase in cell death and vacuolation, which were both inhibited by L-Gln. We show that RGM1 cells metabolize ammonia to urea via arginase, a process that is stimulated by L-Gln and results in reduced ammonia cytotoxicity. L-Gln also inhibits the uptake and facilitates the extrusion of ammonia from cells. Blockade of glutamine synthetase did not reduce the survival of RGM1 cells, demonstrating that the conversion of L-glutamate and ammonia to L-Gln is not involved in ammonia detoxification. Thus our data support a role for L-Gln and arginase in protection against ammonia-induced cell death in gastric epithelial cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available