4.7 Article

Rate of pesticide volatilization from soil: an experimental approach with a wind tunnel system applied to trifluralin

Journal

ATMOSPHERIC ENVIRONMENT
Volume 36, Issue 39-40, Pages 5917-5925

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S1352-2310(02)00775-6

Keywords

emission; soil/atmosphere; pesticide; measurement; wind tunnel

Ask authors/readers for more resources

Pesticide volatilization to the atmosphere may be a major pathway of dissipation closely linked with environmental, physico-chemical and technical factors. Understanding the volatilization process requires systems that make it possible to control some of these factors. Wind tunnels meet to these criteria. The volatilization flux is determined from a mass balance, using the difference in atmospheric pesticide concentration between the entrance and the exit of the tunnel and the airflow rate. An experiment was carried out in June 2000 to study the repeatability of this technique. Volatilization of trifluralin was measured in three wind tunnels for 8 days with a sampling period varying between 3 h and 2 days. Pesticide concentration was determined by trapping by XAD-2 resin in a two stage cartridge, solvent extraction and analysis by gas chromatography. Cumulated losses through volatilization reached 30% of the measured application dose after 8 days, with a variability of less than 20% between the three tunnels. Approximately 20% remained in the topsoil (0-2 cm), with a variability of 14% between the three tunnels. The decrease in the volatilization flux over time is coherent with the expected theoretical evolution for a volatile pesticide such as trifluralin and with previous experimental works. (C) 2002 Elsevier Science Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available