4.6 Article

The role of the sarcoplasmic reticulum in neonatal uterine smooth muscle: enhanced role compared to adult rat

Journal

JOURNAL OF PHYSIOLOGY-LONDON
Volume 545, Issue 2, Pages 557-566

Publisher

WILEY
DOI: 10.1113/jphysiol.2002.031732

Keywords

-

Ask authors/readers for more resources

Little is known about contractile activity, response to agonists or excitation-contraction coupling in neonatal smooth muscle. We have therefore investigated 10-day rat uterus to better understand these processes, and compared it to adult uterus to elucidate how control of contractility develops. Spontaneous contractions are present in the 10-day neonatal uterus, although they are not as large or as regular as those present in adult tissues. External Ca2+ entry via L-type Ca2+ channels is the sole source of Ca2+ and is essential for the spontaneous activity. The neonatal uterus was responsive to carbachol or prostaglandin F,, application; it showed a marked stimulation and a clear dissociation between the force and Ca2+ changes. Such sensitization was not apparent in adult rat myometrium. The sarcoplasmic reticulum (SR) had more releasable Ca2+ and contributed more to the response to agonists in neonatal compared to adult tissues. Thus, Ca2+ entry as opposed to SR Ca2+ release contributed much less to the uterine response to agonists in the neonatal, compared to adult tissues. Inhibition of the SR by cyclopiazonic acid also caused a more vigorous increase in Ca2+ and contractile activity, particularly frequency, in the neonatal compared to the adult uterus. Taken together these data suggest that: (1) spontaneous activity is already present by day 10, (2) receptor-coupling and excitation-contraction signalling pathways are functional, (3) the SR and Ca2+ sensitization mechanisms play a more prominent role in the neonate, and (4) there is a shift to a greater reliance on Ca2+ entry and excitability with development of the myometrium.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available