4.6 Article

A photometric and spectroscopic study of the new dwarf spheroidal galaxy in Hercules Metallicity, velocities, and a clean list of RGB members

Journal

ASTRONOMY & ASTROPHYSICS
Volume 506, Issue 3, Pages 1147-1168

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361/200912718

Keywords

galaxies: dwarf; galaxies: fundamental parameters; galaxies: individual: Hercules; galaxies: kinematics and dynamics; galaxies: photometry

Funding

  1. Knut and Alice Wallenberg Foundation
  2. Royal Society University
  3. Alfred P. Sloan Foundation
  4. Participating Institutions
  5. National Science Foundation
  6. US Department of Energy
  7. National Aeronautics and Space Administration
  8. Japanese Monbukagakusho
  9. Max Planck Society
  10. Higher Education Funding Council for England
  11. STFC [PP/E001068/1, PP/E00105X/1, ST/F010737/1, ST/H00856X/1] Funding Source: UKRI
  12. Science and Technology Facilities Council [ST/H00856X/1, ST/F010737/1, PP/E001068/1, PP/E00119X/1, PP/E00105X/1] Funding Source: researchfish

Ask authors/readers for more resources

Context. Dwarf spheroidal (dSph) galaxies are the least luminous, least massive galaxies known. Recently, the number of observed galaxies in this class has greatly increased thanks to large surveys. Determining their properties, such as mass, luminosity and metallicity, provides key information in our understanding of galaxy formation and evolution. Aims. Our aim is to provide as clean and as complete a sample as possible of red giant branch stars that are members of the Hercules dSph galaxy. With this sample we explore the velocity dispersion and the metallicity of the system. Methods. Stromgren photometry and multi-fibre spectroscopy are combined to provide information about the evolutionary state of the stars (via the Stromgren c(1) index) and their radial velocities. Based on this information we have selected a clean sample of red giant branch stars, and show that foreground contamination by Milky Way dwarf stars can greatly distort the results. Results. Our final sample consists of 28 red giant branch stars in the Hercules dSph galaxy. Based on these stars we find a mean photometric metallicity of -2.35 +/- 0.31 dex which is consistent with previous studies. We find evidence for an abundance spread. Using those stars for which we have determined radial velocities we find a systemic velocity of 45.20 +/- 1.09 km s(-1) with a dispersion of 3.72 km s(-1), this is lower than values found in the literature. Furthermore we identify the horizontal branch and estimate the mean magnitude of the horizontal branch of the Hercules dSph galaxy to be V(0) = 21.17 +/- 0.05, which corresponds to a distance of 147(-7)(+8) kpc. Conclusions. When studying sparsely populated and/or heavily foreground contaminated dSph galaxies it is necessary to include knowledge about the evolutionary stage of the stars. This can be done in several ways. Here we have explored the power of the c(1) index in Stromgren photometry. This index is able to clearly identify red giant branch stars redder than the horizontal branch, enabling a separation of red giant branch dSph stars and foreground dwarf stars. Additionally, this index is also capable of correctly identifying both red and blue horizontal branch stars. We have shown that a proper cleaning of the sample results in a smaller value for the velocity dispersion of the system. This has implications for galaxy properties derived from such velocity dispersions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available