4.6 Article

Simulating radiative astrophysical flows with the PLUTO code: a non-equilibrium, multi-species cooling function

Journal

ASTRONOMY & ASTROPHYSICS
Volume 488, Issue 1, Pages 429-440

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361:200809461

Keywords

radiation mechanisms : thermal; line : formation; ISM : Herbig-Haro objects; ISM : jets and outflows; methods : numerical; magnetohydrodynamics (MHD)

Funding

  1. EU [MRTN-CT-2004-005592]

Ask authors/readers for more resources

Context. Time-dependent cooling processes are of paramount importance in the evolution of astrophysical gaseous nebulae and, in particular, when radiative shocks are present. Given the recent improvements in resolution of the observational data, simulating these processes in a more realistic manner in magnetohydrodynamic (MHD) codes will provide a unique tool for model discrimination. Aims. The present work introduces a necessary set of tools that can be used to model radiative astrophysical flows in the optically-thin plasma limit. We aim to provide reliable and accurate predictions of emission line ratios and radiative cooling losses in astrophysical simulations of shocked flows. Moreover, we discuss numerical implementation aspects to ease future improvements and implementation in other MHD numerical codes. Methods. The most important source of radiative cooling for our plasma conditions comes from the collisionally-excited line radiation. We evolve a chemical network, including 29 ion species, to compute the ionization balance in non-equilibrium conditions. The numerical methods are implemented in the PLUTO code for astrophysical fluid dynamics and particular attention has been devoted to resolve accuracy and efficiency issues arising from cooling timescales considerably shorter than the dynamical ones. Results. After a series of validations and tests, typical astrophysical setups are simulated in 1D and 2D, employing both the present cooling model and a simplified one. The influence of the cooling model on structure morphologies can become important, especially for emission line diagnostic purposes. Conclusions. The tests make us confident that the use of the presented detailed radiative cooling treatment will allow more accurate predictions in terms of emission line intensities and shock dynamics in various astrophysical setups.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available