4.3 Article

Pituitary adenylate cyclase-activating polypeptide induces astrocyte differentiation of precursor cells from developing cerebral cortex

Journal

MOLECULAR AND CELLULAR NEUROSCIENCE
Volume 21, Issue 4, Pages 671-683

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/mcne.2002.1189

Keywords

-

Categories

Funding

  1. NIDDK NIH HHS [DK-49670] Funding Source: Medline

Ask authors/readers for more resources

Ciliary neurotrophic factor and bone morphogenetic proteins induce astrocytogenesis in the developing rat brain by stimulating STAT- and Smad-dependent signaling, respectively. We previously found that stimulation of the cAMP-dependent signaling pathway also triggers differentiation of cerebral cortical precursor cells into astrocytes, providing an additional mechanism to promote astrocyte differentiation. In this study, we show that pituitary adenylate cyclase-activating polypeptide (PACAP), but not the related vasoactive intestinal peptide, induces astrocyte differentiation of cortical precursor cells, even after a transient exposure. Cortical precursors were found to express predominantly the short isoform of the PACAP-specific PAC1 receptor, which couples to adenylate cyclase. Consistent with this notion, we determined that exposure of cortical precursors to PACAP resulted in a dose-dependent increase in cAMP production. Pretreatment of cells with the cAMP antagonist Rp-cAMPS prevented astrocyte differentiation. Thus, PACAP acts as an extracellular signal to trigger cortical precursor cell differentiation into astrocytes via stimulation of intracellular cAMP production.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available