4.6 Article

SPH simulations of grain growth in protoplanetary disks

Journal

ASTRONOMY & ASTROPHYSICS
Volume 487, Issue 1, Pages 265-270

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361:200809522

Keywords

planetary systems : protoplanetary disks; hydrodynamics; methods : numerical

Ask authors/readers for more resources

Aims. In order to understand the first stages of planet formation, when tiny grains aggregate to form planetesimals, one needs to simultaneously model grain growth, vertical settling and radial migration of dust in protoplanetary disks. In this study, we implement an analytical prescription for grain growth into a 3D two-phase hydrodynamics code to understand its effects on the dust distribution in disks. Methods. Following the analytic derivation of Stepinski & Valageas (1997, A& A, 319, 1007), which assumes that grains stick perfectly upon collision, we implement a convenient and fast method of following grain growth in our 3D, two-phase (gas+dust) SPH code. We then follow the evolution of the size and spatial distribution of a dust population in a classical T Tauri star disk. Results. We find that the grains go through various stages of growth due to the complex interplay between gas drag, dust dynamics, and growth. Grains initially grow rapidly as they settle to the mid-plane, then experience a fast radial migration with little growth through the bulk of the disk, and finally pile-up in the inner disk where they grow more efficiently. This results in a bimodal distribution of grain sizes. Using this simple prescription of grain growth, we find that grains reach decimetric sizes in 105 years in the inner disk and survive the fast migration phase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available