4.4 Article

Structure of the Humicola insolens cellobiohydrolase Cel6A D416A mutant in complex with a non-hydrolysable substrate analogue, methyl cellobiosyl-4-thio-β-cellobioside, at 1.9 Å

Journal

ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY
Volume 58, Issue -, Pages 2201-2204

Publisher

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S0907444902017006

Keywords

-

Ask authors/readers for more resources

The enzymatic degradation of cellulose continues to be one of the most important enzyme-catalysed reactions. Glycoside hydrolases from family GH-6 hydrolyse cellulose with inversion of the configuration of the anomeric carbon. Whilst the catalytic proton donor has been clearly identified (Asp226 in Humicola insolens Cel6A), the identification and even the existence of a potential Bronsted base remains unclear. Equally controversial is the role of surface-loop flexibility. Here, the structure of the D416A mutant of the H. insolens cellobiohydrolase Cel6A in complex with a nonhydrolysable thiooligosaccharide methyl cellobiosyl-4-thio-beta-cellobioside at 1.9 Angstrom resolution is presented. Substrate distortion in the -1 subsite, to a S-2(0) skew-boat conformation, is observed, similar to that seen in the analogous Trichoderma reesei Cel6A structure [Zou et al. (1999), Structure, 7, 1035-1045], but the active-centre N-terminal loop of the H. insolens enzyme is found in a more open conformation than described for previous structures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available