4.3 Article

GXIABA-mediated neurotransmission in the ventrolateral NTS plays a role in respiratory regulation in the rat

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpregu.00488.2001

Keywords

apneusis; apnea; inspiratory off-switch

Categories

Funding

  1. NIDA NIH HHS [DA-005889] Funding Source: Medline
  2. NINDS NIH HHS [NS-28130, NS-36035] Funding Source: Medline

Ask authors/readers for more resources

Our purpose was to determine whether endogenously released GABA in the ventrolateral nucleus of the solitary tract (vlNTS) of the rat influences respiration. Experiments were carried out in anesthetized, vagotomized and spontaneously breathing rats, and diaphragm electromyogram activity was measured while drugs affecting GABAergic neurotransmission were microinjected into the vlNTS and medial NTS (mNTS). Bilateral microinjection of nipecotic acid, 5 or 25 nmol, into the vlNTS (but not in the mNTS) produced dose-dependent increases in inspiratory duration (TI) frequently culminating in apneustic breathing. Neither unilateral microinjection of bicuculline nor CGP-35348 (GABA(B) receptor antagonist) reversed this response; however, a combination of both GABA receptor antagonists effectively reversed apneustic breathing. Bilateral microinjection of either muscimol or baclofen into the vlNTS mimicked the effect of nipecotic acid. Microinjection of the bicuculline produced apnea, whereas microinjection of CGP-35348 produced a decrease in TI and an increase in expiratory duration. Immunohistochemical analysis of the vlNTS region revealed GABA(A) receptors densely localized to processes, whereas GABA(B) immunoreactivity was localized to cell bodies. Our data indicate that GABA activity in the vlNTS is important for respiratory function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available