4.6 Article

On self-sustained dynamo cycles in accretion discs

Journal

ASTRONOMY & ASTROPHYSICS
Volume 488, Issue 2, Pages 451-461

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361:200810152

Keywords

accretion, accretion disks; magnetohydrodynamics (MHD); turbulence

Funding

  1. Isaac Newton Trust

Ask authors/readers for more resources

Context. MHD turbulence is known to exist in shearing boxes with either zero or nonzero net magnetic flux. However, the way turbulence survives in the zero-net-flux case is not explained by linear theory and appears as a purely numerical result that is not well understood. This type of turbulence is also related to the possibility of having a dynamo action in accretion discs, which may help to generate the large-scale magnetic field required by ejection processes. Aims. We look for a nonlinear mechanism able to explain the persistence of MHD turbulence in shearing boxes with zero net magnetic flux, and potentially leading to large-scale dynamo action. Methods. Spectral nonlinear simulations of the magnetorotational instability are shown to exhibit a large-scale axisymmetric magnetic field, maintained for a few orbits. The generation process of this field is investigated using the results of the simulations and an inhomogeneous linear approach. We show that quasilinear nonaxisymmetric waves may provide a positive back-reaction on the large-scale field when a weak inhomogeneous azimuthal field is present, explaining the behaviour of the simulations. We finally reproduce the dynamo cycles using a simple closure model summarising our linear results. Results. The mechanism by which turbulence is sustained in zero-net-flux shearing boxes is shown to be related to the existence of a large-scale azimuthal field, surviving for several orbits. In particular, it is shown that MHD turbulence in shearing boxes can be seen as a dynamo process coupled to a magnetorotational-type instability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available