4.6 Article

Multiplicity of young stars in and around R Coronae Australis

Journal

ASTRONOMY & ASTROPHYSICS
Volume 488, Issue 3, Pages 997-1006

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361:200809897

Keywords

stars : pre-main-sequence; stars : binaries : close; infrared : stars; instrumentation : high angular resolution; surveys

Ask authors/readers for more resources

Context. In star-forming regions like Taurus-Auriga, it has been found that most young stars are born as multiples, which theories of star formation should definitely take into account. The R CrA star-forming region has a small dark cloud with quite a number of protostars, T Tauri stars, and some Herbig Ae/Be stars, plus a number of weak-line T Tauri stars around the cloud found by ROSAT follow-up observations. Aims. We would like to detect multiples among the young stars in and around the R CrA cloud in order to investigate multiplicity in this region. Methods. We performed interferometric and imaging observations with the speckle camera SHARP I at the ESO 3.5 m NTT and adaptive optics observation with ADONIS at the ESO 3.6m telescope, all in the near-infrared bands JHK obtained in the years 1995, 2000, and 2001. Results. We found 13 new binaries among the young stars in CrA between 0.13 arcsec (the diffraction limit) and 6 arcsec (set as an upper separation limit to avoid contamination by chance alignments). While most multiples in CrA are binaries, there are also one quadruple (TY CrA), and one triple (HR 7170) which may form a quintuple together with the binary HR 7169. One of the newly detected companions with a large magnitude difference found near the M3-5 type T Tauri star [MR 81] H alpha 17 could be a brown dwarf or an infrared companion with an edge-on disk. Among seven Herbig Ae/Be stars in CrA, six are multiple. Conclusions. The multiplicity frequency in CrA is as high as in similar star forming regions. By comparing with the period distribution of main-sequence stars and extrapolating to separations not probed in this survey, we conclude that the companion-star frequency is (95 +/- 23)%; i.e. the average number of companions per primary is 0.95.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available