4.7 Review

Chaos, fractional kinetics, and anomalous transport

Journal

PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS
Volume 371, Issue 6, Pages 461-580

Publisher

ELSEVIER
DOI: 10.1016/S0370-1573(02)00331-9

Keywords

chaos; anomalous transport; fractional kinetics

Ask authors/readers for more resources

Chaotic dynamics can be considered as a physical phenomenon that bridges the regular evolution of systems with the random one. These two alternative states of physical processes are, typically, described by the corresponding alternative methods: quasiperiodic or other regular functions in the first case, and kinetic or other probabilistic equations in the second case. What kind of kinetics should be for chaotic dynamics that is intermediate between completely regular (integrable) and completely random (noisy) cases? What features of the dynamics and in what way should they be represented in the kinetics of chaos? These are the subjects of this paper, where the new concept of fractional kinetics is reviewed for systems with Hamiltonian chaos. Particularly, we show how the notions of dynamical quasi-traps, Poincare recurrences, Levy flights, exit time distributions, phase space topology prove to be important in the construction of kinetics. The concept of fractional kinetics enters a different area of applications, such as particle dynamics in different potentials, particle advection in fluids, plasma physics and fusion devices, quantum optics, and many others. New characteristics of the kinetics are involved to fractional kinetics and the most important are anomalous transport, superdiffusion, weak mixing, and others. The fractional kinetics does not look as the usual one since some moments of the distribution function are infinite and fluctuations from the equilibrium state do not have any finite time of relaxation. Different important physical phenomena: cooling of particles and signals, particle and wave traps, Maxwell's Demon, etc. represent some domains where fractional kinetics proves to be valuable. (C) 2002 Elsevier Science B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available