4.6 Article

On the observability of resonant structures in planetesimal disks due to planetary migration

Journal

ASTRONOMY & ASTROPHYSICS
Volume 480, Issue 2, Pages 551-U140

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20077934

Keywords

method : N-body simulations; celestial mechanics; stars : planetary systems; stars : individual : Vega

Ask authors/readers for more resources

Context. The observed clumpy structures in debris disks are commonly interpreted as particles trapped in mean- motion resonances with an unseen exo- planet. Populating the resonances requires a migrating process of either the particles (spiraling inward due to drag forces) or the planet (moving outward). Because the drag time- scale in resolved debris disks is generally long compared to the collisional time- scale, the planet migration scenario might be more likely, but this model has so far only been investigated for planets on circular orbits. Aims. We present a thorough study of the impact of a migrating planet on a planetesimal disk, by exploring a broad range of masses and eccentricities for the planet. We discuss the sensitivity of the structures generated in debris disks to the basic planet parameters. Methods. We perform many N-body numerical simulations, using the symplectic integrator SWIFT, taking into account the gravitational influence of the star and the planet on massless test particles. A constant migration rate is assumed for the planet. Results. The effect of planetary migration on the trapping of particles in mean motion resonances is found to be very sensitive to the initial eccentricity of the planet and of the planetesimals. A planetary eccentricity as low as 0.05 is enough to smear out all the resonant structures, except for the most massive planets. The planetesimals also initially have to be on orbits with a mean eccentricity of less than than 0.1 in order to keep the resonant clumps visible. Conclusions. This numerical work extends previous analytical studies and provides a collection of disk images that may help in interpreting the observations of structures in debris disks. Overall, it shows that stringent conditions must be fulfilled to obtain observable resonant structures in debris disks. Theoretical models of the origin of planetary migration will therefore have to explain how planetary systems remain in a suitable configuration to reproduce the observed structures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available