4.6 Article

Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 49, Pages 47938-47945

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M207442200

Keywords

-

Funding

  1. NCI NIH HHS [R25 CA023944, 2 P30 CA 21765-24-25] Funding Source: Medline

Ask authors/readers for more resources

Ubiquitin-like proteins (ub-lps) are conjugated by a conserved enzymatic pathway, involving ATP-dependent activation at the C terminus by an activating enzyme (E1) and formation of a thiolester intermediate with a conjugating enzyme (E2) prior to ligation to the target. Ubc9, the E2 for SUMO, synthesizes polymeric chains in the presence of its El and MgATP. To better understand conjugation of ub-lps, we have performed mutational analysis of Saccharomyces cerevisiae Ubc9p, which conjugates the SUMO family member Smt3p. We have identified Ubc9p surfaces involved in thiolester bond and Smt3p-Smt3p chain formation. The residues involved in thiolester bond formation map to a surface we show is the E1 binding site, and E2s for other ub-lps are likely to bind to their E1s at a homologous site. We also find that this same surface binds Smt3p. A mutation that impairs binding to El but not Smt3p impairs thiolester bond formation, suggesting that it is the El interaction at this site that is crucial. Interestingly, other E2s and their relatives also use this same surface for binding to ubiquitin, E3s, and other proteins, revealing this to be a multipurpose binding site and suggesting that the entire E1-E2-E3 pathway has coevolved for a given ub-1p.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available