4.6 Article

NHE1 regulates the stratum corneum permeability barrier homeostasis - Microenvironment acidification assessed with fluorescence lifetime imaging

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 49, Pages 47399-47406

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M204759200

Keywords

-

Funding

  1. NHLBI NIH HHS [HL61974] Funding Source: Medline
  2. NIAMS NIH HHS [AR19098, AR44341] Funding Source: Medline

Ask authors/readers for more resources

The outermost epidermal layer, the stratum corneum (SC), exhibits an acidic surface pH, whereas the pH at its base approaches neutrality. NHE1 is the only Na+/H+ antiporter isoform in keratinocytes and epidermis, and has been shown to regulate intracellular pH. We now demonstrate a novel function for NHE1, as we find that it also controls acidification of extracellular microdomains in the SC that are essential for activation of pH-sensitive enzymes and the formation of the epidermal permeability barrier. NHE1 expression in epidermis is most pronounced in granular cell layers, and although the surface pH of NHE1 knockout mice is only slightly more alkaline than normal using conventional pH measurements, a more sensitive method, fluorescence lifetime imaging, demonstrates that the acidic intercellular domains at the surface and of the lower SC disappear in NHE1 -/- animals. Fluorescence lifetime imaging studies also reveal that SC acidification does not occur through a uniform gradient, but through the progressive accumulation of acidic microdomains. These findings not only visualize the spatial distribution of the SC pH gradient, but also demonstrate a role for NHE1 in the generation of acidic extracellular domains of the lower SC, thus providing the acidification of deep SC interstices necessary for lipid processing and barrier homeostasis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available