4.8 Article Proceedings Paper

Heritable chromatin structure: Mapping memory in histones H3 and H4

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.182424999

Keywords

-

Funding

  1. NIGMS NIH HHS [R01 GM043893, GM43893] Funding Source: Medline

Ask authors/readers for more resources

Telomeric position effect in Saccharomyces cerevisiae is a chromatin-mediated phenomenon in which telomere proximal genes are repressed (silenced) in a heritable, but reversible, fashion. Once a transcriptional state (active or silenced) is established, however, there is a strong tendency for that state to be propagated. Twenty-five years ago, H. Weintraub and colleagues suggested that such heritability could be mediated by posttranslational modification of chromatin [Weintraub, H., Flint, S. J., Leffak, I. M., Groudine, M. & Grainger, R. M. (1977) Cold Spring Harbor Symp. Quant. Biol. 42, 401-407]. To identify potential sites within the chromatin that might act as sources of memory for the heritable transmission, we performed a genetic screen to isolate mutant alleles of the histories H3 and H4 genes that would lock telomeric marker genes into a silenced state. We identified mutations in the NH2-terminal tail and core of both histories; most of the amino acid changes mapped adjacent to lysines that are known sites of acetylation or methylation. We developed a method using MS to quantify the level of acetylation at each lysine within the histone H4 NH2-terminal tail in these mutants. We discovered that each of these mutants had a dramatic reduction in the level of acetylation at lysine 12 within the histone H4 tail. We propose that this lysine serves as a memory mark for propagating the expression state of a telomeric gene: when it is unacetylated, silent chromatin will be inherited; when it is acetylated an active state will be inherited.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available