4.7 Article

Fission of collapsing cavitation bubbles

Journal

JOURNAL OF FLUID MECHANICS
Volume 472, Issue -, Pages 153-166

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112002002288

Keywords

-

Ask authors/readers for more resources

High-speed observations clearly show that though a collapsing cavitation bubble approaches its minimum size as a coherent single volume, it usually reappears in the first rebounding frame as a cloud of much smaller bubbles or as a highly distorted single volume. This paper explores two mechanisms that may be responsible for that bubble fission process, one invoking a Rayleigh-Taylor stability analysis and the other using the so-called microjet mechanism. Both approaches are shown to lead to qualitatively similar values for the number of fission fragments and the paper investigates the flow parameters that effect that number. Finally, the additional damping of the Rayleigh-Plesset single-bubble calculation caused by the fission process is investigated; it is shown that the fission damping dominates other contributions normally considered and is consistent with the number of collapses and rebounds that are observed to occur in experiments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available