4.6 Article

RNA binding properties of the AU-rich element-binding recombinant Nup475/TIS11/tristetraprolin protein

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 50, Pages 48558-48564

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M206505200

Keywords

-

Funding

  1. NIDDK NIH HHS [DK60720, DK02501] Funding Source: Medline

Ask authors/readers for more resources

Regulation of messenger RNA stability by AU-rich elements is an important means of regulating genes induced by growth factors and cytokines. Nup475 (also known as tristetraprolin, or TIS11) is the prototype for a family of zinc-binding Cys(3)His motif proteins required for proper regulation of tumor necrosis factor mRNA stability in macrophages. We developed an Escherichia coli expression system to produce soluble Nup475 protein in quantity to study its RNA binding properties. Nup475 protein bound a tumor necrosis factor AU-rich element over a broad range of pH and salt concentrations by RNA gel shift. This binding was inhibited by excess zinc metal, providing a potential mechanism for previous reports of zinc stabilization of AU-rich element (ARE) containing messenger RNAs. Immobilized Nup475 protein was used to select its optimal binding site by RNA SELEX and revealed a strong preference for the extended sequence UUAUUUALTU, rather than a simple AUUUA motif. These findings were confirmed by site-directed mutagenesis of the tumor necrosis factor ARE and RNA gel shifts on c-fos, interferon-gamma, and interferon-beta ARE fragments. A weaker binding activity toward adenine-rich sites, such as a poly(A) tail RNA fragment, can partially disrupt the Nup475-tumor necrosis factor AU-rich element complex.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available