4.5 Article

Apoptosis-inducing factor (AIF):: key to the conserved caspase-independent pathways of cell death?

Journal

JOURNAL OF CELL SCIENCE
Volume 115, Issue 24, Pages 4727-4734

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jcs.00210

Keywords

apoptosis; caspases; cell death

Categories

Funding

  1. Telethon [TCP99038] Funding Source: Medline

Ask authors/readers for more resources

Numerous pro-apoptotic signal transducing molecules act on mitochondria and provoke the permeabilization of the outer mitochondrial membrane, thereby triggering the release of potentially toxic mitochondrial proteins. One of these proteins, apoptosis-inducing factor (AIF), is a phylogenetically old flavoprotein which, in healthy cells, is confined to the mitochondrial intermembrane space. Upon lethal signaling, AIF translocates, via the cytosol, to the nucleus where it binds to DNA and provokes caspase-independent chromatin condensation. The crystal structures of both human and mouse AIF have been determined, and the fine mechanisms accounting for its oxidoreductase activity and its electrostatic interaction with double-stranded DNA have been elucidated. Importantly, the apoptogenic and oxidoreductase functions of AIF can be dissociated. Thus, mutations that abolish the AIF-DNA interaction suppress AIF-induced chromatin condensation, yet have no effect on the NADH oxidase activity. Recent studies suggest AIF to be a major factor determining caspase-independent neuronal death, emphasizing the central role of mitochondria in the control of physiological and pathological cell demise.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available