4.0 Editorial Material

Rotation, activity, and lithium abundance in cool binary stars

Journal

ASTRONOMISCHE NACHRICHTEN
Volume 333, Issue 8, Pages 663-705

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/asna.201211719

Keywords

binaries: spectroscopic; stars: fundamental parameters; stars: late-type; stars: rotation; techniques: radial velocities; techniques: photometry; starspots

Ask authors/readers for more resources

We have used two robotic telescopes to obtain time-series high-resolution optical echelle spectroscopy and VI and/or by photometry for a sample of 60 active stars, mostly binaries. Orbital solutions are presented for 26 double-lined systems and for 19 single-lined systems, seven of them for the first time but all of them with unprecedented phase coverage and accuracy. Eighteen systems turned out to be single stars. The total of 6609 R = 55000 echelle spectra are also used to systematically determine effective temperatures, gravities, metallicities, rotational velocities, lithium abundances and absolute Ha-core fluxes as a function of time. The photometry is used to infer unspotted brightness, V I and/or b y colors, spot-induced brightness amplitudes and precise rotation periods. An extra 22 radial-velocity standard stars were monitored throughout the science observations and yield a new barycentric zero point for our STELLA/SES robotic system. Our data are complemented by literature data and are used to determine rotation-temperature-activity relations for active binary components. We also relate lithium abundance to rotation and surface temperature. We find that 74% of all known rapidly-rotating active binary stars are synchronized and in circular orbits but 26% (61 systems) are rotating asynchronously of which half have Prot > Porb and e > 0. Because rotational synchronization is predicted to occur before orbital circularization active binaries should undergo an extra spin-down besides tidal dissipation. We suspect this to be due to a magnetically channeled wind with its subsequent braking torque. We find a steep increase of rotation period with decreasing effective temperature for active stars, Prot a T7eff, for both single and binaries, main sequence and evolved. For inactive, single giants with Prot > 100 d, the relation is much weaker, Prot a T-1.12eff. Our data also indicate a period-activity relation for Ha of the form RHa a P0.24rot for binaries and RHa a P-0.14rot for singles. Its power-law difference is possibly significant. Lithium abundances in our (field-star) sample generally increase with effective temperature and are paralleled with an increase of the dispersion. The dispersion for binaries can be 12 orders of magnitude larger than for singles, peaking at an absolute spread of 3 orders of magnitude near Teff 5000 K. On average, binaries of comparable effective temperature appear to exhibit 0.25 dex less surface lithium than singles, as expected if the depletion mechanism is rotation dependent. We also find a trend of increased Li abundance with rotational period of form log n (Li) a 0.6 log Prot but again with a dispersion of as large as 3-4 orders of magnitude ((c) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available