4.7 Article

Role of poly(ADP-ribose) polymerase activation in endotoxin-induced cardiac collapse in rodents

Journal

BIOCHEMICAL PHARMACOLOGY
Volume 64, Issue 12, Pages 1785-1791

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0006-2952(02)01421-1

Keywords

poly(ADP-ribose) polymerase; endotoxin; shock; cardiac collapse; cardiac function

Funding

  1. NHLBI NIH HHS [R01 HL 59266] Funding Source: Medline

Ask authors/readers for more resources

Reactive oxygen and nitrogen species are overproduced in the cardiovascular system during circulatory shock. Oxidant-induced cell injury involves the activation of poly(ADP-ribose) polymerase (PARP). Using a dual approach of PARP-1 suppression, by genetic deletion or pharmacological inhibition with the new potent phenanthridinone PARP inhibitor PJ34 [the hydrochloride salt of N-(oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide], we studied whether the impaired cardiac function in endotoxic shock is dependent upon the PARP pathway. Escherichia coli endotoxin (lipopolysaccharide, LPS) at 55 mg/kg, i.p., induced a severe depression of the systolic and diastolic contractile function, tachycardia, and a reduction in mean arterial blood pressure in both rats and mice. Treatment with PJ34 significantly improved cardiac function and increased the survival of rodents. In addition, LPS-induced depression of left ventricular performance was significantly less pronounced in PARP-1 knockout mice (PARP(-/-)) as compared with their wild-type littermates (PARP(+/+)). Thus, PARP activation in the cardiovascular system is an important contributory factor to the cardiac collapse and death associated with endotoxin shock. (C) 2002 Elsevier Science Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available