4.7 Article

Theoretical study of the Fe(phen)2(NCS)2 spin-crossover complex with reparametrized density functionals

Journal

INORGANIC CHEMISTRY
Volume 41, Issue 25, Pages 6928-6935

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ic025891l

Keywords

-

Ask authors/readers for more resources

The theoretical study of spin-crossover compounds is very challenging as those parts of the experimental findings that concern the electronic structure of these compounds can currently hardly be reproduced because of either technical limitations of highly accurate ab initio methods or because of inaccuracies of density functional methods in the prediction of low-spin/high-spin energy splitting. However, calculations with reparametrized density functionals on molecules of the thermal spin-crossover type can give improved results when compared with experiment for close-lying states of different spin and are therefore important for, e.g., transition metal catalysis. A classification of transition metal compounds within hybrid density functional theory is given to distinguish standard, critical, and complicated cases. From the class of complicated cases we choose the prominent spin-crossover compound Fe(phen)(2)(NCS)(2) and show in a first step how the electronic contribution to the energy splitting can be calculated. In a second step, the vibrational effects on the spin flip are investigated within the harmonic force-field approximation of the isolated-molecule approach. A main result of the study is the necessity of exact-exchange reduction in hybrid density functionals to arrive at reasonable electronic energy splittings. The study resolves problems that originated from the use of standard density functionals, which are not able to reproduce the electronic contribution to the low-spin/high-spin splitting correctly, and demonstrates to which extent reparametrized density functionals can be used for the prediction of the spin-crossover effect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available