4.4 Article

Mechanism of nucleocapsid protein catalyzed structural isomerization of the dimerization initiation site of HIV-1

Journal

BIOCHEMISTRY
Volume 41, Issue 50, Pages 14762-14770

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi0267240

Keywords

-

Funding

  1. NIGMS NIH HHS [GM 59107] Funding Source: Medline

Ask authors/readers for more resources

Dimerization of two homologous strands of genomic RNA is an essential feature of retroviral replication. In the human immunodeficiency virus type 1 (HIV-1), a conserved stem-loop sequence, the dimerization initiation site (DIS), has been identified as the domain primarily responsible for initiation of this aspect of viral assembly. The DIS loop contains an autocomplementary hexanucleotide sequence flanked by highly conserved 5' and 3' purines and can form a homodimer through a loop-loop kissing interaction. In a structural rearrangement activated by the HIV-1 nucleocapsid protein (NCp7) and considered to be associated with viral particle maturation, the DIS dimer converts from an intermediate kissing to an extended duplex isoform. Using 2-aminopurine (2-AP) labeled sequences derived from the DISMal variant and fluorescence methods, the two DIS dimer isoforms have been unambiguously distinguished, allowing a detailed examination of the kinetics of this RNA structural isomerization and a characterization of the role of NCp7 in the reaction. In the presence of divalent cations, the DIS kissing dimer is found to be kinetically trapped and converts to the extended duplex isoform only upon addition of NCp7. NCp7 is demonstrated to act catalytically in inducing the structural isomerization by accelerating the rate of strand exchange between the two hairpin stem helices, without disruption of the loop-loop helix. Observation of an apparent maximum conversion rate for NCp7-activated DIS isomerization, however, requires protein concentrations in excess of the 2:1 stoichiometry estimated for high-affinity NCp7 binding to the DIS kissing dimer, indicating that transient interactions with additional NCp7(s) may be required for catalysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available