4.7 Article

Enhanced extracellular matrix accumulation in restenosis of coronary arteries after stent deployment

Journal

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY
Volume 40, Issue 12, Pages 2072-2081

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/S0735-1097(02)02598-6

Keywords

-

Funding

  1. NHLBI NIH HHS [HL-18645, HL-41103] Funding Source: Medline

Ask authors/readers for more resources

OBJECTIVES The goal of this study was to evaluate the cellular and extracellular composition of human coronary arterial in-stent restenosis after various periods of time following stent deployment. BACKGROUND Neointimal in-growth rather than stent recoil is thought to be important for coronary arterial in-stent restenosis. There is only limited data on the cellular and extracellular composition changes with time after stent deployment. METHODS We analyzed 29 coronary arterial in-stent restenotic tissue samples (14 left anterior descending coronary artery, 10 right coronary artery, and 5 left circumflex artery) retrieved by using directional coronary atherectomy from 25 patients at 0.5 to 23 (mean, 5.7) months after deployment of Palmaz-Schatz stents employing histochemical and immunocytochemical techniques. RESULTS Cell proliferation was low (0% to 4%). Myxoid tissue containing extracellular matrix (ECM) enriched with proteoglycans was found in 69% of cases and decreased over time after stenting. Cell-depleted areas were found in 57% of cases and increased with time after stenting. Versican, biglycan, perlecan, and hyaluronan were present with varying individual distributions in all samples. Positive transforming growth factor-beta1 staining was found in 80% of cases. Immunostaining with alpha-smooth muscle actin identified the majority of cells as smooth muscle cells with occasional macrophages present (:! 12 cells per section). CONCLUSIONS These data suggest that enhanced ECM accumulation rather than cell proliferation contribute to later stages of in-stent restenosis. Balloon angioplasty of in-stent restenosis may, therefore, fail due to ECM changes during: 1) additional stent expansion, 2) tissue extrusion out of the stent, or 3) tissue compression. (C) 2002 by the American College of Cardiology Foundation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available