4.6 Article

Degradation of cellulose substrates by cellulosome chimeras -: Substrate targeting versus proximity of enzyme components

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 51, Pages 49621-49630

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M207672200

Keywords

-

Ask authors/readers for more resources

A library of 75 different chimeric cellulosomes was constructed as an extension of our previously described approach for the production of model functional complexes (Fierobe, H.-P., Mechaly, A., Tardif, C., Belaich, A., Lamed, R., Shoham, Y., Belaich, J.-P., and Bayer, E. A (2001) J. BioL Chem. 276,21257-21261), based on the high affinity species-specific cohesin-dockerin interaction. Each complex contained three protein components: (i) a chimeric scaffoldin possessing an optional cellulose-binding module and two cohesins of divergent specificity, and (ii) two cellulases, each bearing a dockerin complementary to one of the divergent cohesins. The activities of the resultant ternary complexes were assayed using different types of cellulose substrates. Organization of cellulolytic enzymes into cellulosome chimeras resulted in characteristically high activities on recalcitrant substrates, whereas the cellulosome chimeras showed little or no advantage over free enzyme systems on tractable substrates. On recalcitrant cellulose, the presence of a cellulose-binding domain on the scaffoldin and enzyme proximity on the resultant complex contributed almost equally to their elevated action on the substrate. For certain enzyme pairs, however, one effect appeared to predominate over the other. The results also indicate that substrate recalcitrance is not necessarily a function of its crystallinity but reflects the overall accessibility of reactive sites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available