4.6 Article

Initial characterization of the glutamate-cysteine ligase modifier subunit Gclm(-/-) knockout mouse -: Novel model system for a severely compromised oxidative stress response

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 51, Pages 49446-49452

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M209372200

Keywords

-

Funding

  1. NIA NIH HHS [R01 AG 09235] Funding Source: Medline
  2. NIEHS NIH HHS [R01 ES 10416, P30 ES 06096] Funding Source: Medline

Ask authors/readers for more resources

Glutamate-cysteine ligase (GCL) is the rate-limiting enzyme in the GSH biosynthesis pathway. In higher eukaryotes, this enzyme is a heterodimer comprising a catalytic subunit (GCLC) and a modifier subunit (GCLM), which change the catalytic characteristics of the holoenzyme. To define the cellular function of GCLM, we disrupted the mouse Gclm gene to create a null allele. Gclm(-/-) mice are viable and fertile and have no overt phenotype. In liver, lung, pancreas, erythrocytes, and plasma, however, GSH levels in Gclm(-/-) mice were 9-16% of that in Gclm(+/+) littermates. Cysteine levels in Gclm(-/-) mice were 9,35, and 40% of that in Gclm(+/+) mice in kidney, pancreas, and plasma, respectively, but remained unchanged in the liver and erythrocytes. Comparing the hepatic GCL holoenzyme with GCLC in the genetic absence of GCLM, we found the latter had an similar to2-fold increase in K-m for glutamate and a dramatically enhanced sensitivity to GSH inhibition. The major decrease in GSH, combined with diminished GCL activity, rendered Gclm(-/-) fetal fibroblasts strikingly more sensitive to chemical oxidants such as H2O2. We conclude that the Gclm(-/-) mouse represents a model of chronic GSH depletion that will be very useful in evaluating the role of the GCLM subunit and GSH in numerous pathophysiological conditions as well as in environmental toxicity associated with oxidant insult.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available