4.8 Article

The cell cycle regulatory factor TAF1 stimulates ribosomal DNA transcription by binding to the activator UBF

Journal

CURRENT BIOLOGY
Volume 12, Issue 24, Pages 2142-2146

Publisher

CELL PRESS
DOI: 10.1016/S0960-9822(02)01389-1

Keywords

-

Ask authors/readers for more resources

Control of ribosome biogenesis is a potential mechanism for the regulation of cell size during growth [1, 2], and a key step in regulating ribosome production is ribosomal RNA synthesis by RNA polymerase I (Pol I) [3, 4]. In humans, Pol I transcription requires the upstream binding factor UBF and the selectivity factor SL1 to assemble coordinately on the promoter [5-7]. UBF is an HMG box-containing factor that binds to the rDNA promoter and activates Pol I transcription through its acidic carboxy-terminal tail [8, 9]. Using UBF (284-670) as bait in a yeast two-hybrid screen, we have identified an interaction between UBF and TAF1, a factor involved in the transcription of cell cycle and growth regulatory genes [10]. Coimmunoprecipitation and protein-protein interaction assays confirmed that TAF1 binds to UBF. Confocal microscopy showed that TAF1 colocalizes with UBF in Hela cells, and cell fractionation experiments provided further evidence that a portion of TAF1 is localized in the nucleolus, the organelle devoted to ribosomal DNA transcription. Cotransfection and in vitro transcription assays showed that TAF1 stimulates Pol I transcription in a dosage-dependent manner. Thus, TAF1 may be involved in the coordinate expression of Pol I and Pol II-transcribed genes required for protein biosynthesis and cell cycle progression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available