4.6 Article

A dominant-negative p38 MAPK mutant and novel selective inhibitors of p38 MAPK reduce insulin-stimulated glucose uptake in 3T3-L1 adipocytes without affecting GLUT4 translocation

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 277, Issue 52, Pages 50386-50395

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M205277200

Keywords

-

Funding

  1. NIDDK NIH HHS [1R01-DK55758] Funding Source: Medline

Ask authors/readers for more resources

Participation of p38 mitogen-activated protein kinase (p38) in insulin-induced glucose uptake was suggested using pyridinylimidazole p38 inhibitors (e.g. SB203580). However, the role of p38 in insulin action remains controversial. We further test p38 participation in glucose uptake using a dominant-negative p38 mutant and two novel pharmacological p38 inhibitors related to but different from SB203580. We present the structures and activities of the azaazulene pharmacophores A291077 and A304000. p38 kinase activity was inhibited in vitro by A291077 and A304000 (IC50 = 0.6 and 4.7 muM). At higher concentrations A291017 but not A304000 inhibited JNK2alpha (IC50 = 3.5 muM). Pretreatment of 3T3-L1 adipocytes and L6 myotubes expressing GLUT4myc (L6-GLUT4myc myotubes) with A291077, A304000, SB202190, or SB203580 reduced insulin-stimulated glucose uptake by 50-60%, whereas chemical analogues inert toward p38 were ineffective. Expression of an inducible, dominant-negative p38 mutant in 3T3-L1 adipocytes reduced insulin-stimulated glucose uptake. GLUT4 translocation to the cell surface, immunodetected on plasma membrane lawns of 3T3-L1 adipocytes or on intact L6-GLUT4myc myotubes, was not altered by chemical or molecular inhibition of p38. We propose that p38 contributes to enhancing GLUT4 activity, thereby increasing glucose uptake. In addition, the azaazulene class of inhibitors described will be useful to decipher cellular actions of p38 and JNK.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available